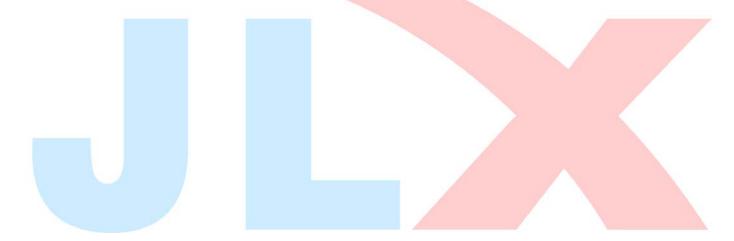


JLX6432-OLED-049-P 中文使用说明书

序号	内 容 标 题	页码
1	概述	2
2	特点	2
3	外形及接口引脚功能	3~4
4	基本原理	4
5	技术参数	4~5
6	时序特性	5~6
7	指令功能及硬件接口与编程案例	7~页末

电话: 0755-29784961 Http://www.jlxlcd.cn


1. 概述

晶联讯电子专注于液晶屏及液晶模块的研发、制造。所生产 JLX64320LED-049 型液晶模块由于 使用方便、显示清晰,广泛应用于各种人机交流面板。

JLX64320LED-049 可以显示 64 列*32 行点阵单色图片, 或显示 16*16 点阵的汉字 4 个*2 行, 或 显示 8*16 点阵的英文、数字、符号 8 个*2 行。或显示 5*8 点阵的英文、数字、符号 12 个*4 行。

2. JLX64320LED-049 图像型点阵液晶模块的特性

- 2.1 结构牢: 焊接式 FPC。
- 2.2 IC 采用 SSD1306, 功能强大, 稳定性好
- 2.3 功耗低。
- 2.4 显示内容:
 - ●64*32 点阵单色图片;
 - ●可选用 16*16 点阵或其他点阵的图片来自编汉字, 按照 16*16 点阵汉字来计算可显示 4 字/行*2 行。按照 12*12 点阵汉字来计算可显示 5 字/行*2 行。
- 2.5 指令功能强:可组合成各种输入、显示、移位方式以满足不同的要求:
- 2.6 接口方式: I²C 接口。
- 2.7 工作温度宽:-20℃ 70℃:
- 2.8 储存温度宽: -30℃-80℃;

电话: 0755-29784961 2 Http://www.jlxlcd.cn

3. 外形尺寸及接口引脚功能

3.1 外形图

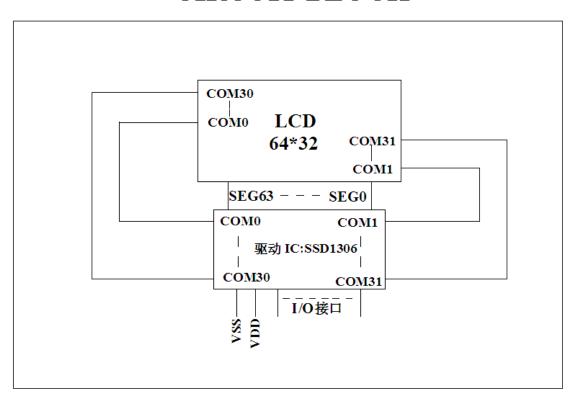
图 1. 液晶模块外形尺寸

电话: 0755-29784961 3 Http://www.jlxlcd.cn

模块的接口引脚功能

引线号	符号	名 称	功 能
1	VSS	接地	OV
2	VDD	电源电路	5V,或3.3V 可选
3	SCL	I/0	串行时钟
4	SDA	I/0	串行数据

表 1: 模块的接口引脚功能


4. 基本原理

4.1 液晶屏(LCD)

在 LCD 上排列着 64X32 点阵, 64 个列信号与驱动 IC 相连, 32 个行信号也与驱动 IC 相连, IC 邦 定在 LCD 玻璃上(这种加工工艺叫 COG).

电路框图

CIRCUIT BLOCK

5. 技术参数

5.1 最大极限参数(超过极限参数则会损坏液晶模块)

名称	符号		单位		
		最小	典型	最大	
电路电源	VDD - VSS	-0.3		7. 0	V
LCD 驱动电压	VDD - VO	VDD - 13.5		VDD + 0.3	V
静电电压				100	V

电话: 0755-29784961 4 Http://www.jlxlcd.cn

工作温度	-20	+70	$^{\circ}$ C
储存温度	-30	+80	$^{\circ}\mathbb{C}$

表 2: 最大极限参数

5.2 直流 (DC) 参数

名 称	符号	测试条件	7	单位		
			MIN	TYPE	MAX	
工作电压(当	VDD		2.4	3. 3	3. 6	V
3.3V 供电时)						
工作电压(当			4.8	5. 0	5. 2	V
5.0V 供电时)						
输入高电平	VIHC		0.8xVDD		VDD	V
输入低电平	VILC		VSS		0.2xVDD	V
输出高电平	V OHC	IOH = 0.2 mA	0.8xVDD		VDD	V
输出低电平	VOHC	100 = 1.2 mA	VSS		0.2xVDD	V
模块工作电流	$\mathbf{I}_{ ext{DD}}$	VDD = 3.3V			0.3	mA

表 3: 直流 (DC) 参数

6. 读写时序特性

6.1 I2C接口:

从 CPU 写到 SSD1306 (Writing Data from CPU to SSD1306)

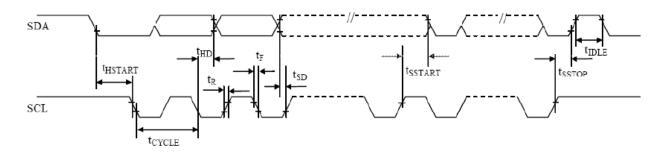


图 4. 从 CPU 写到 SSD1306 (Writing Data from CPU to SSD1306)

6.2 120 接口: 时序要求(AC 参数):

写数据到 SSD1306 的时序要求:

表 4.

项 目	符号	测试条件		极限值		单位
			MIN	TYPE	MAX	
时钟周期时间	t cycle		2.5	_		μs
启动条件的保持时间	t hstart		0.6	_		μs
数据保持时间("sdaout"销)	+		0	_		ns
数据保持时间("sdain"销)	t HD		300			ns
数据建立时间	t sd		100	_	_	μs
启动条件设置时间(只有一	t sstart		0.6	_		μs
个重复起始条件有关)						
停止条件建立时间	Tsstop		0.6	_		μs
下降时间数据和时钟引脚	Tr			_	300	ns

电话: 0755-29784961 5 Http://www.jlxlcd.cn

JLX I	晶联讯电
-------	------

上升时间的数据和时钟引	Tf		300	ns
脚				
在一个新的传输可以开始	Tidle	1.3	 	μs
空闲时间				

^{* (}VDD =1.65V~3.3V, Ta = 25°C)

6.3 电源启动后复位的时序要求(RESET CONDITION AFTER POWER UP):

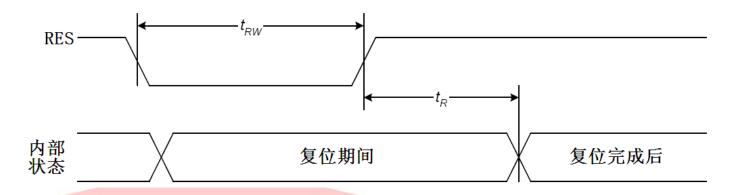
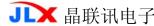



图 7: 电源启动后复位的时序

表 6: 电源启动后复位的时序要求

			从 0. 记顺相到相及压制制力 文外									
项目		符号		Ĭ.	则试条件		极限值		单位			
						MIN	TYPE	MAX				
复位时间		t R				_	_	1.0	us			
复位保持低电平	的时间	trw		引脚:	RES	1.0	\rightarrow	_ <	us			

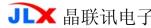
电话: 0755-29784961 Http://www.jlxlcd.cn 6

7. 指令功能:

7.1 指令表

指令名称	名称 指 令 码								说明	
	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
(1)显示开/关	0	1	0	1	0	1	1	1	0	显示开/关:
(display on/off)									1	OXAE:关, OXAF: 开
(2)显示初始行设置	0	0	1	显示初始行地址,共6位						设置显示存储器的显示初始行,可设置值为
(Display start line set)										0X40~0X7F ,分别代表第 0~63 行,针对该
										液晶屏一般设置为 0x40
(3)页地址设置	0	1	0	1	1	显示	页地址,	共4	位	设置页地址。每8行为一个页,64行分为8
(Page address set)										个页,可设置值为: 0XB0~0XB8 分别对应第
										一页到第 <mark>九</mark> 页,第九页是一个单独的一行图
										标,本液晶屏没有这一行图标,所以设置值
										为 0XB0~0XB7 分别对应第一页~第八页。
列地址高4位设置	0	0	0	0	1	列地域	业的高	4位		高 4 位与低 4 位共同组成列地址,指定 128
(4)										列中的其中一列。比如液晶模块的第 100 列
列地址低4位设置		0	0	0	0	列地均	止的低	4 位		地址十六进制为 0x64, 那么此指令由 2
										个字节来表达: 0x16, 0x04
(5) 读状态 0			状	态		0	0	0	0	并口时:读驱动IC的当前状态,串口时不能
(Status read)										用此指令。
(6)写显示数据到液晶屏	1				8 位显	示数据				从 CPU 写数据到液晶屏,每一位对应一个
(Display data write)	1									点阵,1个字节对应8个竖置的点阵
(7)读液晶屏的显示数据	1				8 位显	示数据		并口时:读已经显示到液晶屏上的点阵数		
(Display data read)						_				据。串口时不能用此指令。
(8) 显示列地址增减		1	0	1	0	0	0	0	0	显示列地址增减:
(ADC select)									1	0xA0:反转:列地址从右到左,
										0xA1: 常规: 列地址从左到右
(9)显示正显/反显	0	1	0	1	0	0	1	1	0	显示正显/反显:
(Display									1	0xA6: 常规: 正显
normal/reverse)										0xA7: 反显
(10)显示全部点阵	0	1	0	1	0	0	1	0	0	显示全部点阵:
(Display all points)									1	0xA4: 常规
										0xA5:显示全部点阵
(11) 行扫描顺序选择		1	1	0	0	0	0	0	0	行扫描顺序选择:
(Common output mode						1				0XC0 :普通扫描顺序:从上到下
select)										0XC8 :反转扫描顺序:从下到上
(12)OLED 振荡频率设	0	1	1	0	1	0	1	0	1	设置振荡频率:范围: 0000-1111,
置 (Oscillator										参考指令: 0Xd5
Frequency)										0X80

电话: 0755-29784961 7 Http://www.jlxlcd.cn


(13) 电源控制	0	1	0	0	0	1	1	0	1	设置升压: 0X8d
(Power control set)										0X14

(14)	内部设置液晶 电压模式	0	1	0	0	0	0	0	0	1	设置内部电阻微调,可以理解为 微调 对比度 值,此两个指令需紧接着使用。上面一条指 令 0x81 是不改的,下面一条指令可设置范
(,	设置的电压值		0	0	6 位电压值数据, 0~63 共 64 级			64 级		围为: 0x00~0xFF ,数值越大对比度越浓,越小越淡	
(15)静	态图标显示:	0	1	0	1	0	1	1	1	0	静态图标的开关设置:
开/关										1	0xAE : 关, 0xAF : 开。
											此指令在进入及退出睡眠模式时起作用
(16) 省	自电模式(Power										省电模式,此非一条指令,是由"(10)显示
save)											全部点阵"、 (19)静态图标显示: 开/关等
											指令合成一个"省电功能"。详细看 IC 规
											格书 "POWER SAVE"部分
(17)空	指令(NOP)	0	1	1	1	0	0	0	1	1	空操作

7.2 初始化方法

用户所编的显示程序, 开始必须进行初始化, 否则模块无法正常显示, 过程请参考程序

电话: 0755-29784961 Http://www.jlxlcd.cn 8

液晶模块与 MPU(以 8051 系列单片机为例)接口图如下:

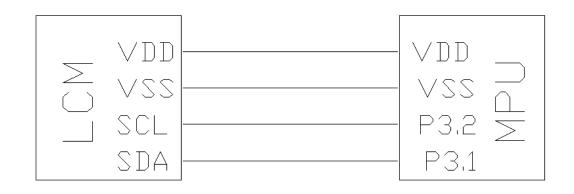


图 8.串行接口

电话: 0755-29784961 Http://www.jlxlcd.cn 9

7.3.1程序

```
//
      液晶演示程序
//
      液晶模块型号: JLX64320LED-049, IIC 接口!
//
      驱动 IC 是:SSD1306
//
      编写: 叶建人,8月15日,2014年
//
      版权所有: 晶联讯电子: 网址 http://www.jlxlcd.cn;
#include <reg52.H>
#include <intrins.h>
#include <string.h>
#include <stdio.h>
                //接口定义:1cd sclk 就是 LCD 的 SCLK //SCLK 接到"DO"脚
sbit SCL =P3<sup>2</sup>;
sbit SDA =P3<sup>1</sup>;
                    //接口定义:1cd sda 就是 LCD 的 SDA
                                                      //SDIN 接到 "D1" 脚
                       //定义一个按键: P2.0 口与 GND 之间接一个按键
sbit key=P2^0;
#define uchar unsigned char
#define uint unsigned int
#define ulong unsigned long
#include <ASCII_CODE_8X16_5X8_VERTICAL.H>
#include <Chinese And Graphic.H>
void start();
void stop();
void waitkey();
//延时
void delay(int i)
   int j, k;
   for (j=0; j < i; j++)
      for (k=0; k<110; k++);
}
void write_w(unsigned char dat)
{
    unsigned char m, da;
    unsigned char j;
    da=dat;
```

电话: 0755-29784961 10 Http://www.jlxlcd.cn


```
for (j=0; j<8; j++)
     m=da;
     SCL=0;
     m=m\&0x80;
     if(m==0x80)
     SDA=1;
     else
     SDA=0;
     da=da<<1;
     SCL=1;
     SCL=0;
     SCL=1;
void transfer_command(unsigned char ins)
     start();
     write_w(0x78);
     write_w(0x00);
     write_w(ins);
     stop();
void transfer_data(unsigned char dat)
     start();
     write_w(0x78);
     write_w(0x40);
     write_w(dat);
     stop();
void start()
     SCL=1;
     SDA=1;
     SDA=0;
     SCL=0;
```

电话: 0755-29784961 11 Http://www.jlxlcd.cn

```
void stop()
    SCL=0;
    SDA=0;
    SDA=1:
    SCL=1:
//OLED 显示模块初始化
void initial_lcd()
   transfer_command(0xae); //美显示
   transfer_command(0xd5); //晶振频率
   transfer_{command}(0x80);
   transfer command(0xa8); //duty 设置
   transfer_command(0x3f); //duty=1/64
   transfer_command(0xd3); //显示偏移
   transfer_{command}(0x00);
   transfer_command(0x40); //起始行
   transfer_command(0x8d); //升压允许
   transfer_command(0x14);
   transfer_command(0x20); //page address mode
   transfer_command(0x02);
   transfer_command(0xc8); //行扫描顺序: 从上到下
   transfer_command(0xa1); //列扫描顺序: 从左到右
   transfer_command(0xda); //sequential configuration
   transfer_command(0x12);
```

transfer_command(0x81); //微调对比度,本指令的0x81不要改动,改下面的值

电话: 0755-29784961 12 Http://www.jlxlcd.cn

transfer_command(0xcf); //微调对比度的值, 可设置范围 0x00~0xff

```
transfer command(0xd9); //Set Pre-Charge Period
   transfer command (0xf1);
   transfer command(0xdb); //Set VCOMH Deselect Level
   transfer command (0x40);
   transfer_command(0xaf); //开显示
void lcd_address(uchar page, uchar column)
                                        //我们平常所说的第1列,在LCD 驱动 IC 里是
   column=column-1;
第0列。所以在这里减去1.
   page=page-1;
                                    //设置页地址。每页是8行。一个画面的64行被
   transfer_command(0xb0+page);
分成8个页。我们平常所说的第1页,在LCD驱动IC里是第0页,所以在这里减去1
   transfer_command(((column>>4)&0x0f)+0x12); //设置列地址的高 4 位
   transfer command(column&0x0f);
                                        //设置列地址的低 4 位
//全屏清屏
void clear_screen()
   unsigned char i, j;
   for (j=0; j<8; j++)
      1cd address (1+j, 1);
      for (i=0; i<64; i++)
         transfer_data(0x00);
//full display test
void full_display(uchar data1, uchar data2)
```

电话: 0755-29784961 13 Http://www.jlxlcd.cn

//第4页~第7页:

```
int i, j;
   for (i=0; i<8; i++)
       1cd_{address(i+1, 1)};
       for (j=0; j<32; j++)
       {
           transfer_data(data1);
           transfer_data(data2);
       }
//测试外框是否缺划(少行、少列)
void test_box()
   int i, j;
//第1页:
   lcd_address(1, 1);
   transfer_data(0xff);
   for (i=1; i<31; i++)
       transfer_{data}(0x01);
   transfer_data(0xff);
//第2页:
   lcd_address(2, 1);
   transfer_data(0xff);
   for (i=1; i<31; i++)
       transfer_data(0x80);
   transfer_data(0xff);
//第3页:
   1cd_address(3, 1);
   transfer_data(0xff);
   for (i=1; i<31; i++)
       transfer_data(0x01);
   transfer_data(0xff);
```

电话: 0755-29784961 14 Http://www.jlxlcd.cn

```
for (j=4; j \le 7; j++)
       1cd_address(2, 1);
       transfer_data(0xff);
       for (i=1; i<31; i++)
       {
           transfer_data(0x00);
       transfer_data(0xff);
//第8页:
   1cd_address(4, 1);
   transfer_data(0xff);
   for (i=1; i<31; i++)
       transfer_data(0x80);
   transfer_data(0xff);
//测试
void test()
   full_display(0xff, 0xff);
   waitkey();
   full_display(0x55, 0x55);
   waitkey();
   full_display(0xaa, 0xaa);
   waitkey();
   full_display(0xff, 0x00);
   waitkey();
   full_display(0x00, 0xff);
   waitkey();
   full_display(0x55, 0xaa);
   waitkey();
   full_display(0xaa, 0x55);
   waitkey();
   test_box();
   waitkey();
}
```

电话: 0755-29784961 15 Http://www.jlxlcd.cn

void display_64x32 (uchar page, uchar column, uchar *dp)

```
uint i, j;
   for (j=0; j<4; j++)
      //1cd_address(j+1, 1);
       lcd_address(page+j, column);
       for (i=0; i<64; i++)
                                             //写数据到LCD, 每写完一个8位的数据后列地
          transfer_data(*dp);
址自动加1
          dp++;
void display_graphic_32x32(uchar page, uchar column, uchar *dp)
   uchar i, j;
   for (j=0; j<4; j++)
       lcd_address(page+j, column);
       for (i=0; i<32; i++)
          transfer_data(*dp);
                                   //写数据到 LCD, 每写完一个 8 位的数据后列地址自动加 1
          dp++;
void display_string_8x16(uint page, uint column, uchar *text)
   uint i=0, j, k, n;
   if (column>123)
      column=1;
      page+=2;
   while(text[i]>0x00)
       if((text[i])=0x20)&&(text[i]<=0x7e))
          j=text[i]-0x20;
```

电话: 0755-29784961 16 Http://www.jlxlcd.cn


```
for (n=0; n<2; n++)
             lcd_address(page+n, column);
             for (k=0; k<8; k++)
                transfer_data(ascii_table_8x16[j][k+8*n]); //写数据到LCD, 每写完1
字节的数据后列地址自动加1
          i++;
          column+=8;
      }
      else
      i++;
//写入一组 16x16 点阵的汉字字符串(字符串表格中需含有此字)
//括号里的参数: (页,列,汉字字符串)
void display_string_16x16(uchar page, uchar column, uchar *text)
   uchar i, j, k;
   uint address;
   j = 0;
   while (text[j] != ' \setminus 0')
       i = 0;
       address = 1;
       while(Chinese_text_16x16[i] > 0x7e) // >0x7f 即说明不是 ASCII 码字符
           if(Chinese\_text\_16x16[i] == text[j])
               if(Chinese\_text\_16x16[i + 1] == text[j + 1])
                   address = i * 16;
                   break;
           i += 2:
       if (column > 113)
```

电话: 0755-29784961 17 Http://www.jlxlcd.cn


```
column = 0;
           page += 2;
       if (address != 1)// 显示汉字
          for (k=0; k<2; k++)
             lcd_address(page+k, column);
               for (i = 0; i < 16; i++)
                   transfer_data(Chinese_code_16x16[address]);
                   address++:
           j += 2;
                         //显示空白字符
       else
          for (k=0; k<2; k++)
             lcd_address(page+k, column);
               for (i = 0; i < 16; i++)
                   transfer_data(0x00);
           j++;
       column += 16;
//显示 16x16 点阵的汉字或者 ASCII 码 8x16 点阵的字符混合字符串
//括号里的参数: (页,列,字符串)
void disp_string_8x16_16x16(uchar page, uchar column, uchar *text)
   uchar temp[3];
```

电话: 0755-29784961 18 Http://www.jlxlcd.cn

```
uchar i = 0;
   while (\text{text}[i] != ' \setminus 0')
       if(text[i] > 0x7e)
           temp[0] = text[i];
           temp[1] = text[i + 1];
           temp[2] = ' \setminus 0';
                                   //汉字为两个字节
           display_string_16x16(page, column, temp); //显示汉字
           column += 16;
           i += 2;
       else
           temp[0] = text[i];
           temp[1] = ' \setminus 0';
                              //字母占一个字节
           display_string_8x16(page, column, temp); //显示字母
           column += 8;
           i++;
void main(void)
   while(1)
       initial_lcd();
                                            //初始化
       clear_screen();
                                            //清屏
       display_64x32(5, 1, bmp6432_1);
      waitkey();
       clear_screen();
       display 64x32(5, 1, bmp6432 2);
       waitkey();
       clear screen();
      display 64x32(5, 1, bmp6432 3);
       waitkey();
       clear screen();
                                            //清屏
//演示 32x32 点阵的汉字, 16x16 点阵的汉字, 8x16 点阵的字符, 5x8 点阵的字符
      display graphic 32x32 (5, 1+32*0, jing1);
                                                              //显示单个 32x32 点阵的
汉字,括号里的参数分别为(PAGE,列,字符指针)
```

电话: 0755-29784961 Http://www.jlxlcd.cn 19


```
waitkey();
       clear_screen();
        display_graphic_32x32 (5, 1+32*1, 1ian1);
       waitkey();
        clear_screen();
        display_graphic_32x32 (5, 1+32*0, xun1);
       waitkey();
        clear_screen();
        disp_string_8x16_16x16(7,1," -04901");
        disp_string_8x16_16x16(5, 1+32*0, "JLX:");
       disp_string_8x16_16x16(5, 1+32*1, "OLED");
       waitkey();
       test();
}
//等待按键: P2.0 口与 GND 之间接一个按键
void waitkey()
{
          if(key==1) goto repeat;
repeat:
              delay(2000);
       else
```

电话: 0755-29784961 20 Http://www.jlxlcd.cn