

JLX12864G-99-2 使用说明书

序号	内容标题	页码
1	概述	2
2	字符型模块的特点	2
3	外形及接口引脚功能	2~3
4	基本原理	4
5	技术参数	4
6	时序特性	5~6
7	指令功能及硬件接口与编程案例	6~13

1. 概述

晶联讯电子专注于液晶屏及液晶模块的研发、制造。所生产 JLX12864G-99-2 型液晶模块由于使用方便、显示清晰,广泛应用于各种人机交流面板。

JLX12864G-99-2 可以显示 128 列*64 行点阵单色图片,或显示 8 个/行*4 行 16*16 点阵的汉字,或显示 16 个/行*8 行 8*8 点阵的英文、数字、符号。

2. JLX12864G-99-2 图像型点阵液晶模块的特性

- 1.1 重量轻:≤65g;
- 1.2 视窗大:65.5*38.0mm 厚;
- 1.3 结构牢: 带 PCB、背光、铁框
- 1.4IC 采用矽创公司 ST7565R, 功能强大, 稳定性好
- 1.5 功耗低:10 100mW(不带背光 10mW, 带背光不大于 100mW);
- 1.6 显示内容:
 - ●128*64 点阵单色图片;
 - ●可选用 16*16 点阵或其他点阵的图片来自编汉字,按照 16*16 点阵汉字来计算可显示 8字/行*4 行。按照 12*12 点阵汉字来计算可显示 10字/行*4 行。
- 1.7 指令功能强:可组合成各种输入、显示、移位方式以满足不同的要求:
- 1.8接口简单方便:采用4线 SPI 串行接口,可只需5位 MPU 的端口(4线 SPI 接口加上复位信号线〈RESET〉)。如需并行接口,可选用我厂的 JLX12864G-100 等产品代换。
- 1.9 工作温度宽:-20℃ 70℃:
- 1.10 可靠性高:寿命为 50,000 小时(25℃)。

3. 外形尺寸及接口引脚功能

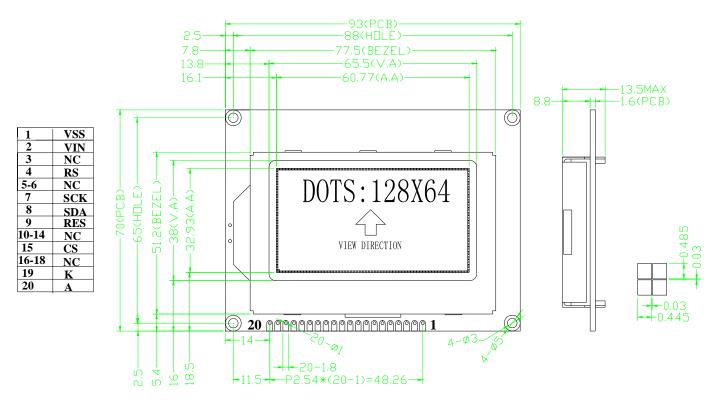


图 1. 外形尺寸

模块的接口引脚功能

	1	F	
引线号	符号	名 称	功 能
1	VSS	接地	OV
2	VIN	电路电源	5V, 或 3. 3V 可选
3	NC	空脚	
4	RS	寄存器选择信号	H:数据寄存器 0:指令寄存器 (IC 资料上所写为"AO")
5~6	NC	空脚	
7	SCK	串行时钟	串行时钟(IC资料上所写为"SCL")
8	SDA	串行数据	数据传输(IC资料上所写为"SI")
9	RES	复位	低电平复位,复位完成后,回到高电平,液晶模块开始工作
10~14	NC	空脚	
15	CS	片选	低电平片选
16~18	NC	空脚	
19	K	LED 背光负极	OV
20	A	LED 背光正极	5V, 或 3. 3V 可选

表 1: 模块的接口引脚功能

4. 基本原理

4.1 液晶屏 (LCD)

在 LCD 上排列着 128×64 点阵, 128 个列信号与驱动 IC 相连, 64 个行信号也与驱动 IC 相连, IC 邦定在 LCD 玻璃上(这种加工工艺叫 COG).

4.2 工作电图:

图 1 是 JLX12864G-99-2 图像点阵型模块的电路框图, 它由驱动 IC ST7565R 及几个电阻电容组成。

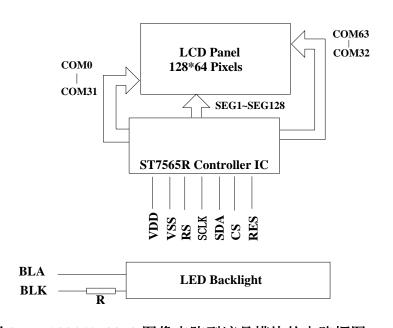


图 2: JLX12864G-99-2 图像点阵型液晶模块的电路框图

接口方面,有5条数据及控制线。可与微处理器或微控制器相连,通过送入数据和指令,就可使模

4.3 背光参数

该型号液晶模块带 LED 背光源。它的性能参数如下:

工作温度:-20∽+70°C; 存储温度:-30∽+80°C;

背光板可显示绿色, 黄绿色, 兰色和白色。背光一般为绿色, 也可为客户设计为其他颜色, 但价 格较绿色贵一点。

正常工作电流为: 10 ∽ 20mA (若 LED 灯数不止一颗,则乘以相应数量);

工作电压: 3.0V;

正常工作条件下, LED 可连续点亮 5 万小时;

5. 技术参数

5.1 最大极限参数(超过极限参数则会损坏液晶模块)

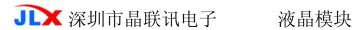

名称	符号		标准值							
		最小	典型	最大						
电路电源	VDD - VSS	-0.3		7. 0	V					
LCD 驱动电压	VDD - VO	VDD - 13.5		VDD + 0.3	V					
静电电压		_	_	100	V					
工作温度		-20		+70	$^{\circ}\mathbb{C}$					
储存温度		-30		+80	$^{\circ}\mathbb{C}$					

表 2: 最大极限参数

5.2 直流 (DC) 参数

名 称	符号	测试条件		单位		
			MIN	TYPE	MAX	
工作电压	VIN	3. 3V 供电	2.4	3. 3	3.6	V
		5. 0V 供电	4.0	5. 0	5. 2	V
输入高电平	VIH	_	2. 2		VDD	V
输入低电平	VIO		-0.3		0.6	V
输出高电平	VOH	IOH = 0.2 mA	2.4		ı	V
输出低电平	V00	100 = 1.2 mA	1		0.4	V
工作电流	IDD	VDD = 5.0V		2.0		mA

表 3: 直流 (DC) 参数

6. 读写时序特性

6.1 从 CPU 写到 ST7565R(Writing Data from CPU to ST7565R)

The 4-line SPI Interface

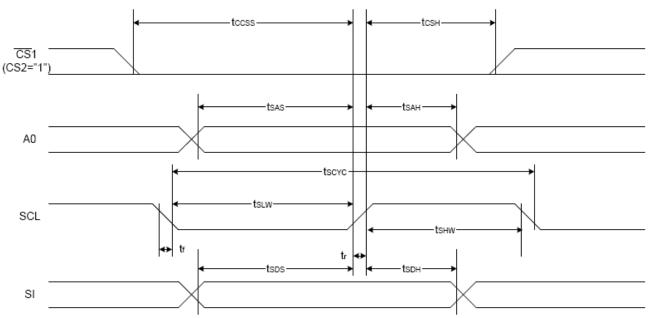


图 3. 从 CPU 写到 ST7565R(Writing Data from CPU to ST7565R)

6.2 时序要求 (AC 参数):

写数据到 ST7565R 的时序要求:

表 4.

与数据到 31/303代 町町	汀女 不:					夜 4.
项 目	符号	符 号 测试条件 极限值				单位
			MIN	TYPE	MAX	
4线 SPI串口时钟周期	Tscyc	引脚: SCK	50		25	ns
(4-line SPI Clock Period)						
保持SCK高电平脉宽	Tshw	引脚: SCK	25			ns
(SCK "H" pulse width)						
保持SCK低电平脉宽	TsLw	引脚: SCK	25			ns
(SCK "L" pulse width)						
地址建立时间	Tsas	引脚: RS	20			ns
(Address setup time)						
地址保持时间	Tsah	引脚: RS	10			ns
(Address hold time)						
数据建立时间	Tsds	引脚: SI	20			ns
(Data setup time)						
数据保持时间	TsdH	引脚: SI	10			ns
(Data hold time)						
片选信号建立时间	Tcss	引脚: CS	20			ns
(CS-SCL time)						
片选信号保持时间	Tcsh	引脚: CS	40			ns
(CS-SCL time)						

VDD =3.0V \pm 5%, Ta = 25°C

6.3 电源启动后复位的时序要求 (RESET CONDITION AFTER POWER UP):

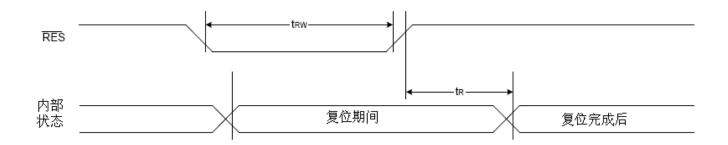


图 5: 电源启动后复位的时序

表 6: 电源启动后复位的时序要求

	-	~ · · · · · · · · · · · · · · · · · · ·		*			
项 目	符号	测试条件		极限值	极限值		
			MIN	TYPE	MAX		
复位时间	tr				1.0	us	
复位保持低电平的时间	trw	引脚: RES	1.0			us	

7. 指令功能:

7.1 指令表

(4)

列地址高4位

设置

格式:

RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0

共11种指令:1.清除, 2.返回, 3.输入方式设置, 4.显示开关, 5.控制, 移位, 6.功能设置, 7. CGRAM 地址设置, 8. DDRAM 地址设置, 9. 读忙标志, 10. 写数据到 CG/DDRAM, 11. 读数据由 CG/DDRAM。

指令名称			指	1 令	码				说 明		
	RS	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0		
(1)显示开/关	0	1	0	1	0	1	1	1	0	显示开/关:	
(display on/off)									1	0:关, 1: 开	
(2)显示初始行设置	0	0	1		显示袖	刃始行均	也址,非	共5位		设置显示存储器的显示初始行	
(Display start line											
set)											
(3)页地址设置	0	1	0	1	1	显示	页地址,	共4	立	设置显示页地址(注:每8行为一	
(Page address										个页,64 行分为8个页,例 0000	
set)										为第一页,0001 为第二页	

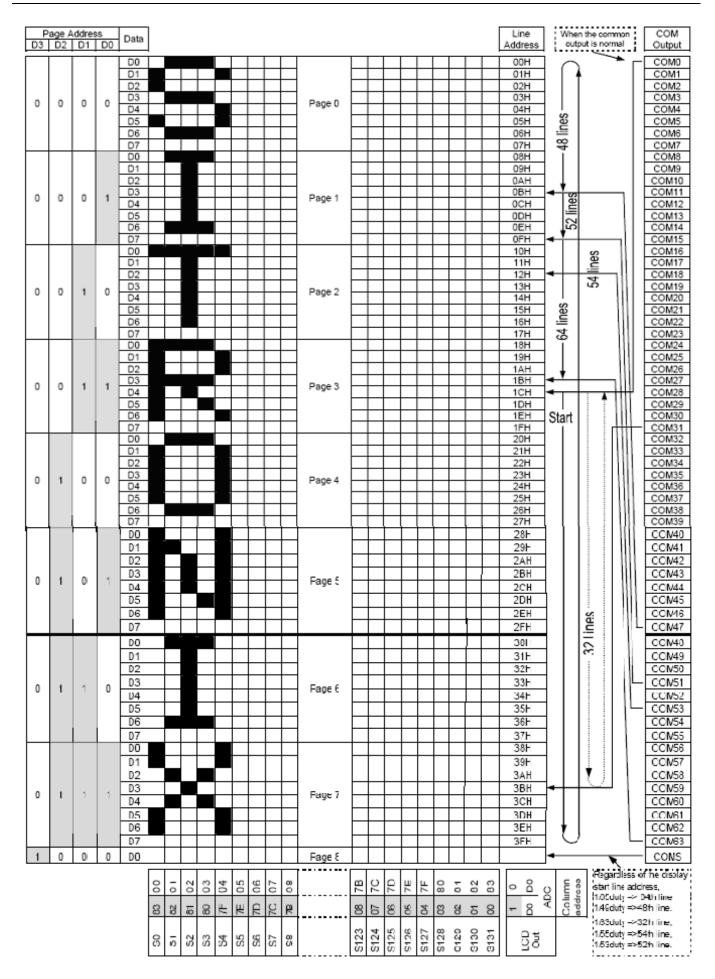
列地址的高 4 位

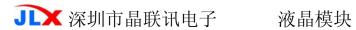
高 4 位与低 4 位共同组成列地址,

分别指定 128 列中任对应列。本液

表 8.

	列地址低4位 设置		0	0	0	0	列地址的低 4 位				晶 模 块 的 第 一 列 的 地 址 为 00000001, 所以此指令表达为: 0x10,0x01
(5)	」 读状态(Status Ⅰ)	0		状	态	1	0	0 0 0			在本型号液晶模块不用此指令
	后数据(Display write)	1				8 位显	示数据		ı	l	从 CPU 写数据到液晶模块
	乘数据(Display read)	1				8 位显	示数据				在本型号液晶模块不用此指令
` '	显示列地址增 ADC select)		1	0	1	0	0	0	0	0	显示列地址增减: 0: 常规: 从左到右, 1: 反转: 从右到左
(Di	是示正显/反显 isplay nal/reverse) 显示全部点阵	0	1	0	1	0	0	1	0	0 1 0	显示正显/反显: 0:常规: 正显 1:反显 显示全部点阵:
(Dis	play all points) LCD 偏压比设	0	1	0	1	0	0	0	1	1 0	20. 常规 1:显示全部点阵 设置偏压比:
置 (LCD bias set)									1	0: 1/9 BIAS 1: 1/7BIAS
	d-modify-write	0	1	1	1	0	0	0	0	0	Column address increment At write: +1 At read: 0
13) (En	退出上述指令 d)	0	1	1	1	0	1	1	1	0	退出上述 "read/modify/write" 指令
` '	软件复位 eset)	0	1	1	1	0	0	0	1	0	软件复位。
择(C	行扫描顺序选 Common out mode ct)		1	1	0	0	0	0	0	0	行扫描顺序选择: 0: 普通顺序 1: 反向扫描
` '	电源控制 wer control set)		0	0	1	0	1		操作模 , 共 3		选择内部电压供应操作模式
(17) 比例	选择内部电阻	0	0	0	1	0	0	内部	地压值 设置	电阻	选择内部电阻比例(Rb/Ra),本 液晶模块通过外置电阻设置,此指 令失效
(18	内部设置液 晶电压模式	0	1	0	0	0	0	0	0	1	设置内部电阻微调,以设置液晶电 压,此两个指令需紧接着使用
)	设置的电压 值		0	0		1	直数据	, 0~6	3 共 64	1	
(19) 开/)	静态图标显示:	0	1	0	1	0	1	1	0	0	0: 关, 1: 开。本液晶屏无此图标, 所以此指令无效

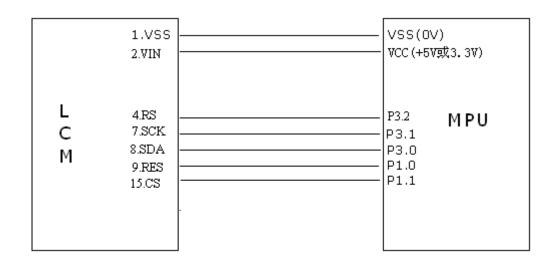

(20) 升压倍数选择	0	1	1	1	1	1	0	0	0	选择升压倍数:	
(Booster ratio set)		0	0	0	0	0	0	2 位数	放设置 倍数	00: 2倍, 3倍, 4倍01: 5倍11: 6倍。本模块外部已设置升压倍数为4倍,不必使用此指令	
(21) 省电模式 (Power save)										省电模式,此非一条指令,是由 "(10)显示全部点阵"、(19)静态 图标显示:开/关等指令合成一个 "省电功能"。	
(22) 空 指 令 (NOP)	0	1	1	1	0	0	0	1	1	空操作	
(23) 测试 (Test)	0	1	1	1	1	*	*	*	*	内部测试用,千万别用!	


请详细参考 IC 资料"ST7564R_V15.PDF"的第 42~49 页。

7.3 点阵与 DD RAM 地址的对应关系

请留意页的定义: PAGE, 与平时所讲的"页"并不是一个意思, 在此表示 8 个行就是一个"页", 一个 128*64 点阵的屏分为 8 个"页", 从第 0 "页"到第 7 "页"。

DB7—DB0 的排列方向: 数据是从下向上排列的。最低位 D0 是在最上面, 最高位 D7 是在最下面。下图摘自 ST7565R IC 资料, 可通过 "ST7565R_V15. PDF"之第 27 页获取最佳效果。



7.4 初始化方法

用户所编的显示程序, 开始必须进行初始化, 否则模块无法正常显示, 过程请参考程序

7.5 程序举例:

液晶模块与 MPU(以 8051 系列单片机为例)接口图如下:

;初始化子程序 INITIAL: ;软件复位 MOV A, #0E2H ;调用写指令子程序 (call Write command sub-program),以下相同 WCOM LCALL LCALL **DELAY** A, #02CH ;设置内部电压模式, X0, X1, X2=1, 0, 0 MOV LCALL WCOM LCALL DELAY ;设置内部电压模式, X0, X1, X2=1, 1, 0 MOV A, #02EH LCALL WCOM LCALL DELAY ;设置内部电压模式, X0, X1, X2=1, 1, 1, 以上#02CH\#02EH\#02FH; A, #02FH MOV ;是内部升压电路的三步曲 LCALL WCOM LCALL **DELAY** MOV A, #023H ;设置内部调压电阻值,通常用#023H LCALL WCOM MOV A, #0A2H ;设置 LCD 偏压比 (Bias): 1/9 LCALL WCOM ;设置液晶驱动电压微调 V0 值 MOV A, #081H LCALL WCOM

MOV A, #02DH ;设置液晶驱动电压微调 V0 值,与上述#081H 指令共同使用。但电 ;压值由此指令决定 WCOM LCALL MOV A, #0C8h ;设置行扫描顺序为从上到下扫描 LCALL WCOM MOV A, #0A0H ;设置列扫描顺序为从左到右 WCOM LCALL :设置起始行位置,从第1行开始 A, #060H MOV WCOM LCALL MOV A, #OAFH :打开显示 WCOM LCALL RET WCOM: CLR CS ; 片选 :寄存器选择为:指令 CLR RS JMP TRANSMIT WDATA: ; 片选 CLR CS RS :寄存器选择为:数据 **SETB** TRANSMIT: :时钟 CLR SCLK MOV 44H, #08 TRAN1: ;左移一位数据 RLC A MOV SDI, C ; 左移到进位标志位 CY, 被提取到 SDI 引线 **SETB** SCLK ;时钟上升沿锁存数据 ;时钟回复到低电平,为下一次时钟作准备 CLR SCLK NOP NOP NOP NOP. DJNZ 44H, TRAN1 RET C 语言的程序: void Initial Lcd() {

reset=0;

//Reset the chip when reset=0

```
Delay (200);
      reset=1:
      Delay (200);
      Transfer command(0xe2); //软件复位
      Delay (10):
      Transfer_command(0x2c); //设置内部电压模式, X0, X1, X2=1, 0, 0
      Delay (10);
      Transfer_command(0x2e); //设置内部电压模式, X0, X1, X2=1, 1, 0
      Delay (10):
      Transfer command (0x2f);
                           //设置内部电压模式, X0, X1, X2=1, 1, 1, 以上
                           //#02CH\#02EH\#02FH 是内部升压电路的三步曲
      Delay (10);
      Transfer_command(0x23); //设置内部调压电阻值,通常用#023H
      Transfer command(0x81); //设置液晶驱动电压微调 V0 值
      Transfer command(0x2d); //;设置液晶驱动电压微调 V0 值,与上述#081H 指令共同使用。
                           //但电压值由此指令决定
      Transfer_command(0xa2); //设置LCD 偏压比(Bias): 1/9
      Transfer command(0xc8); //设置行扫描顺序为从上到下扫描
      Transfer command(0xa0); //设置列扫描顺序为从左到右
      Transfer_command(0x60); //设置起始行位置,从第1行开始
      Transfer_command(0xaf); //打开显示
void Transfer command(int data1)
   char i:
   cs1=0;
   rs=0;
   for (i=0; i<8; i++)
            sc1k=0;
            if (data1\&0x80) sid=1;
            else sid=0;
            Delay1(5);
            sc1k=1;
            Delay1(5):
            data1 = data1 < < = 1;
}
```

//----传送数据到液晶模块-

液晶模块


```
void Transfer_data(int data1)
    char i;
    cs1=0;
    rs=1;
   for (i=0; i<8; i++)
               sc1k=0;
               if(data1&0x80) sid=1;
               else sid=0;
               sc1k=1;
               data1=data1<<=1;</pre>
```